Astronomer Ken Tapping looks over some of the electronics at the Dominion Radio Astrophysical Observatory. Western News file photo

Star Gazing: Iron is important stuff

Ken Tapping is an astronomer with the NRC’s Dominion Radio Astrophysical Observatory

Iron is important stuff. Our way of life depends on it.

It is involved in some way in almost everything we make, and it is a key element in our body chemistry. Actually, it is even more important than that. The fact our planet exists and that the materials of life are out there in the interstellar gas and dust clouds are all thanks to the nature of iron.

As far as we have been able to deduce, no iron existed at the beginning of the universe, and the Big Bang never made any. All the iron around us and in our bodies was produced in the cores of ageing stars. Paradoxically, if it were not for the extraordinary stability of iron atoms, they, along with all the other elements needed for making planets and living things, might have remained locked away inside stars — unavailable.

The nuclear power stations currently in use employ nuclear fission — breaking big atoms into smaller ones — to produce energy. We mine rare, unstable atoms such as uranium, and exploit that instability, encouraging them to break into smaller, more stable atoms. Stars work the other way. They form from the collapse of huge cosmic clouds of mainly hydrogen. This is the very simplest atom, consisting of one proton and one electron, compared with uraniumís 92 electrons, 92 protons and 143 neutrons. The hydrogen in starsí cores is compressed and heated by the weight of the overlying material, until nuclear fusion starts. In this process, four atoms of hydrogen (four protons and four electrons) coalesce into one atom of helium (two electrons, two protons and two neutrons). Two protons from the hydrogen are converted in to neutrons and everything left over is radiated as energy, making the star shine.

When a star starts to run out of hydrogen in its core, it shrinks a bit; causing the pressure and temperature to go up until the helium starts to fuse into larger atoms, such as carbon, nitrogen and oxygen. If a star is large enough to achieve sufficiently high pressures and temperatures in its core, it can go on, fusing lighter elements into heavier ones. However, this is a process of diminishing returns. Each additional fusion process yields less energy. With less energy release potential, these atoms are more stable. A handful of soil, with little energy release potential, is highly stable. A handful of gunpowder, with a large energy release potential is far less stable.

If from the hydrogen end, increasingly large atoms are more stable, and from the uranium end, smaller atoms are more stable, there should be an element in the middle whose atoms are the most stable. That atom is iron. Making bigger or smaller atoms out of iron atoms requires energy; it won’t produce any.

This means trouble for stars. During their lives they have been obtaining energy by fusing smaller atoms into larger ones, until the waste product is iron. At this point energy production stops. The core cools, the pressure drops and the star starts to shrink. This sends the pressure and temperature up again, but the iron is unaffected. As the temperature rises, an increasing flood of particles known as neutrinos are produced, sucking more energy out of the core. The shrinkage continues and the temperature eventually rises to the point where the iron becomes unstable, turning back into helium and lighter elements, and sucking out all the energy produced by fusing them into iron. This dramatically cools the star’s core, removing the pressure holding up the star’s outer layers. They collapse, generating a nuclear explosion that blows the star apart. The explosion provides the energy to make those elements with larger atoms than iron. All this stuff is ejected into space, where it becomes available for making planets and people — thanks to the stability of iron.

Ken Tapping is an astronomer with the NRC’s Dominion Radio Astrophysical Observatory, Penticton.

Just Posted

PenTalkton aims to start conversations

What ideas should shape the future of Penticton?

Modular construction plant rebounds to 50 employees

That’s more employees than before Britco slashed operations this year and they say they’ll expand more

Annett finishes season on the podium at Ironman Arizona

Penticton triathlete sets new course record on the bike

Freezing rain expected on the Coquihalla

Wet weather expected to cause issues on B.C. highways

McIvor left a legacy of community building

Former Penticton librarian, city councillor and school trustee dies at home.

VIDEO: Rare comic showing Superman’s 1st appearance to be auctioned

The 1938 comic features Superman hoisting a car over his head

LGBTQ advocates want military, RCMP to take part in apology

“These are all the organizations that perpetrated past discrimination against the LGBTQ community.”

Canadians are getting bad advice from the taxman

An auditor has found that Canadians are getting bad advice from the taxman, when they can get through

B.C. mining company stakes claim in Australia

Copper Mountain is set to purchase Cloncurry Copper Project in a $93-million deal.

Serious home invasion reported in Kamloops

Two people are in hospital with serious injuries following a home invasion

Cash donations create purchasing power

Salvation Army and food banks stretch a donated dollar a long way

ICBC overbilling for crash repairs not the problem, dealers say

Collision repair shops reject union claim of inflated costs

B.C. groups to address child sex abuse in sports

viaSport is organizing a full day of education in association with Canadian Centre for Child Protection and the Coaching Association of Canada.

Report sets exercise guidelines for young kids, including ‘tummy time’ for babies

Kids aged one to four should get at least three hours of physical activity throughout the day

Most Read